WWW.NAUKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Книги, издания, публикации
 


Pages:     | 1 |   ...   | 2 | 3 || 5 |

«Астрономический словарь От Аберрации до Яркости Фонд развития При поддержке лицея №130 Новосибирск – 2013 А • Аберрация (звездная) - наблюдаемое смещение положения звезды относительно ...»

-- [ Страница 4 ] --

• Прямое восхождение (RA) - одна из координат, используемых в экваториальной системе для определения положения объектов на небесной сфере. Представляет собой эквивалент долготы на Земле, но измеряется в часах, минутах и секундах времени в восточном направлении от нулевой точки, в качестве которой принято пересечение небесного экватора и эклиптики, известное как первая точка Овна. Один час прямого восхождения эквивалентен 15 дуговым градусам; это кажущийся угол, который из-за вращения Земли небесная сфера проходит за один час звездного времени.

П

• Пульсар - звездный источник радиоволн, характеризующийся высокой частотой и регулярностью всплесков излучения. Время между последовательными импульсами составляет для пульсаров в двойных системах от нескольких миллисекунд (у быстрых) до 4 секунд (у самых медленных). Некоторые пульсары, кроме радиоволн, генерируют пульсирующее излучение и в других диапазонах электромагнитного спектра, в том числе в видимом свете. Пульсар представляет собой вращающуюся нейтронную звезду с массой, примерно равной массе Солнца, но имеющую радиус всего около 10 км. Импульсы возникают из-за того, что нейтронная звезда очень быстро вращается, а сигнал радиоизлучения попадает к наблюдателю один раз при каждом обороте. Сами импульсы очень регулярны, если не считать появления случайных сбоев. Пульсары образуются при взрывах сверхновых, хотя в настоящее время только два из них, пульсар в Крабовидной туманности и пульсар в Парусах, находятся внутри наблюдаемых остатков сверхновых.

• Пылевой хвост (хвост типа II) - один из двух типов хвостов кометы, образующихся при ее приближении к Солнцу. Пылевой хвост состоит из частиц размером около одного микрона, которые светятся отраженным солнечным светом. Пылевые хвосты могут достигать в длину десяти миллионов километров. Под влиянием лучистого давления они изгибаются в сторону, противоположную Солнцу.

Р

• Равноденствие - момент пересечения центра диска Солнца небесного экватора при переходе в северное полушарие (весеннее) или южное (осеннее). В северной точке весеннего равноденствия Солнце пересекает эклиптику с юга на север, а в северной точке осеннего равноденствия - с севера на юг. Приблизительные даты этих событий - 21 марта и 23 сентября. Положение северной точки весеннего равноденствия традиционно называется "первой точкой Овна" и до сих пор часто представляется символом, принятым для обозначения созвездия Овна. Однако под влиянием прецессии эта точка постепенно переместилась так, что теперь фактически лежит в соседнем созвездии Рыб.

• Радиант - точка схождения параллельных лучей в перспективе. Очень четко определяется для метеоров, принадлежащих к одному потоку. Все метеоры некоторого метеорного роя, вторгающегося в атмосферу Земли, порождают практически параллельные следы, а их видимое расхождение от точки радианта - эффект перспективы.

• Радиационный пояс - кольцеобразная область вокруг планеты, в которой находятся электрически заряженные частицы (электроны и протоны), оказавшиеся там в результате движения по спиральным траекториям вдоль силовых линий магнитного поля планеты.

Радиационные пояса, окружающие Землю, известны как пояса Ван Аллена. Подобные области существуют и вокруг других планет, имеющих магнитное поле (например, Юпитера).

Р

• Радиоастрономия - исследование Вселенной посредством обнаружения радиоизлучения небесных объектов. Основными источниками космического радиоизлучения являются Солнце, Юпитер, межзвездный ионизированный водород, пульсары, квазары, а также космическое фоновое излучение самой Вселенной.

Используемые в радиоастрономии частоты занимают обширный диапазон от 10 Mгц до 300 Ггц. Имеется несколько диапазонов, в которых международные соглашения запрещают генерацию радиосигналов (например, собственная частота атомарного водорода, равная 1421 Mгц, что соответствует длине волны 21 см). Основной инструментарий радиоастрономии - радиотелескопы, используемые или как автономные управляемые антенны (до 100 м в диаметре), или как массивы антенн, которые образуют радиоинтерферометры. Радиотелескопы сами по себе имеют, по сравнению с оптическими телескопами, плохое угловое разрешение, поэтому их используют главным образом в исследованиях, где позиционная точность не очень существенна, например, при анализе временных кривых излучения пульсаров или при крупномасштабном картировании, как в случае микроволнового фона. Там, где требуется большая точность (например, при картировании радиогалактик) необходимо использовать интерферометры. Именно после того, как с начала 1940-х гг. стали применяться радиоастрономические методы, были открыты пульсары, квазары и микроволновый фон.

• Радиогалактика - галактика, являющаяся источником интенсивного радиоизлучения. На каждый миллион галактик приходится одна радиогалактика. Радиоизлучение представляет собой синхротронное излучение электронов, движущихся со скоростями, близкими к скорости света. В радиогалактике Лебедь A, часто считающейся прототипом радиогалактик, имеются два обширных облака радиоизлучения, расположенных симметрично с каждой стороны возмущенной эллиптической галактики и простирающихся более, чем на три миллиона световых лет. Кажется маловероятным, что столь большое выделение энергии может быть результатом нормальных ядерных реакций в звездах. Поэтому был предложен механизм, в котором в качестве "центрального движителя" работают черные дыры. Радиогалактики тесно связаны с квазарами, многие из которых в радиодиапазоне имеют близкие характеристики.

Р

• Радиолокационная астрономия - использование импульсного радиолокационного сигнала в астрономии, например, при обнаружении метеорных потоков, измерении расстояний в пределах Солнечной системы и картировании поверхности тел Солнечной системы. Радиолокационные сигналы 305-метрового радиотелескопа Аресибской обсерватории были с успехом использованы для картирования Венеры, а также для определения размеров и формы астероидов. Космический аппарат "Магеллан", находившийся на орбите вокруг Венеры, использовал для картирования поверхности планеты, скрытой непрозрачными облаками, радиолокатор синтеза апертур. Методы радиолокационной астрономии очень важны для определения масштабов расстояния в пределах Солнечной системы и тем самым величины астрономической единицы.

• Радиотелескоп - инструмент для обнаружения, приема и анализа радиоволн от любого космического источника. Все такие телескопы включают радиоантенну, сигнал с которой поступает на усилитель и детектор. Большой диапазон частот в радиоастрономии приводит к тому, что для различных частей спектра приходится использовать различные методы, так что радиотелескопы очень различаются между собой.

Основная проблема радиоастрономии состоит в получении удовлетворительного углового разрешения.

Телескоп, работающий на некоторой длине волны и имеющий антенну с диаметром, в 100 раз больше, имеет разрешающую способность порядка 1°. Чтобы достичь разрешения, равного половине дуговой секунды, что было бы сопоставимо с хорошим оптическим телескопом, нужно построить антенну диаметром в 50000 длин волны с точностью до одной десятой длины волны. Так, на длине волны 21 см диаметр такой антенны составил бы 100 км. Одиночные управляемые антенны используются главным образом для изучения межзвездного вещества на длине волны линии 21 см и переменных источников типа пульсаров. Размер апертуры полностью управляемых антенн ограничивается весом конструкции и составляет около 100 м. Высокое угловое разрешение, необходимое для картирования структуры объектов типа радиогалактик и квазаров можно получить, создавая массивы или сети телескопов, которые образуют радиоинтерферометр.

Р

• Радиус Шварцшильда - критический радиус, при котором пространство-время, окружающее сферическое тело, становится настолько искривленным, что заворачивается вокруг тела.

Объект, который сколлапсировал внутри своего шварцшильдовского радиуса, представляет собой черную дыру, из которой ничто не может уйти во внешний мир. Шварцшильдовский радиус для объекта с массой Солнца составляет 3 км, а для объекта с массой Земли - 1 см.

• Разрешающая способность - способность оптической системы различать детали изображения. Теоретически возможное разрешение ограничено размером апертуры и связано с возникновением дифракции. Из-за дифракции изображение точечного источника превращается в окруженный кольцами диск, который называется атмосферным диском. Его диаметр (в радианах) равен 1,1/D, что задает теоретически возможную разрешающую способность. Практически, однако, разрешающая способность большого наземного оптического телескопа ограничена не величиной апертуры, а качеством видимости.

• Рассеянное скопление - тип звездного скопления, содержащего от нескольких сотен до нескольких тысяч звезд, распределенных в области размером в несколько световых лет.

Члены такого скопления находятся на значительно большем удалении друг от друга, чем в шаровых скоплениях. Рассеянные скопления относительно молоды, обычно содержат много горячих и очень ярких звезд. Они расположены в диске Галактики и поэтому на небе лежат в пределах Млечного Пути. Среди общеизвестных рассеянных скоплений выделяются Плеяды, Гиады и "Шкатулка драгоценностей".

Р

• Расширяющаяся Вселенная - модель Вселенной, в которой фундаментальная шкала расстояний с течением времени увеличивается. В настоящее время в качестве адекватной шкалы рассматривается расстояние между скоплениями галактик. Открытие того, что красное смещение галактик увеличивается с расстоянием (1929 г.), и обнаружение космического фонового излучения (1964 г.) обычно считаются доказательством расширения Вселенной.

• Реголит - слой мелкозернистой рыхлой породы, напоминающей земную почву, на поверхности Луны и планетарных тел.

• Регрессия узлов - постепенное перемещение к западу узлов, в которых орбита Луны пересекает эклиптику. Явление возникает из-за гравитационного влияния Солнца; его полный цикл занимает 18,61 года.

• Резонанс - ситуация, в которой одно вращающееся по орбите тело подвержено регулярным периодическим гравитационным возмущениям со стороны другого. Резонанс возникает на орбитах, когда периоды обращения тел связаны целочисленными отношениями (например 1:1, 2:1, 3:2). Из-за резонанса возникают такие явления, как пробелы Кирквуда в поясе астероидов или щели в планетарных кольцах, например, у Сатурна.

Р

• Рентгеновская астрономия - изучение рентгеновского излучения астрономических источников. Считается, что рентгеновский диапазон охватывает длины волн от 10 до 0,01 нм, между крайним ультрафиолетом и гамма- излучением. Соответствующий диапазон энергий составляет от 0,1 до 100 кэВ. Из космоса сквозь атмосферу к поверхности Земли рентгеновские лучи проникнуть не могут, так что все рентгеновские астрономические наблюдения выполняются инструментами, находящимися на ракетах или спутниках. Рентгеновское излучение Солнца было обнаружено во время полетов ракет в 1950-х гг. Первым рентгеновским источником, обнаруженным вне Солнечной системы в 1962 г. группой Американского научно-технического общества под руководством Рикардо Джаккони, был Скорпион X-1. Для проведения более обширных обзоров неба были необходимы спутники. На борту американских военных спутников "Вела", работавших в 1969-1979 гг., находились и рентгеновские детекторы. Первым спутником, полностью ориентированным на рентгеновскую астрономию, был "Ухуру" (1970г), с которого началась серия Небольших астрономических спутников. В 1973 г. с помощью специального телескопа в экспериментах проекта "Скайлэб" были получены рентгеновские изображения Солнца. Для изучения других объектов, кроме Солнца, такой отображающий рентгеновский телескоп был впервые использован на борту Обсерватории "Эйнштейн".

Р

• В 1985 г. в космос был выведен рентгеновский телескоп другого типа (на борту "Спейслэб-2"), использовавший метод "кодированной маски". Телескоп работал в диапазоне более высоких энергий и был снабжен диафрагмой со сложной системой отверстий. В число других важных рентгеновских астрономических спутников входили "Коперник" (1971 г.), "EXOSAT", "Гинга" (1987 г.), "ROSAT" (1990 г.) и "Беппо-САКС" (1996 г.). Самый обширный класс ярких рентгеновских источников включает взаимодействующие двойные звезды в которых один из компонентов представляет собой вырожденную звезду - белый карлик, нейтронную звезду или черную дыру.

Имеются две категории таких двойных рентгеновских звезд. В массивных двойных системах большой компаньон представляет собой звезду в 10-20 солнечных масс, и вещество его расширившейся оболочки перетекает непосредственно на вырожденную звезду. В менее массивных двойных системах оба компонента имеют сравнимые массы, так что передача массы происходит через аккреционный диск. По мере накопления гравитационной энергии перетекающее между звездами вещество разогревается до температур, достаточных для возникновения рентгеновского излучения. Такие двойные часто являются периодическими переменными, причем периодичность определяется периодом обращения системы, периодом вращения вырожденной звезды или периодом прецессии аккреционного диска. Их светимость в рентгеновском диапазоне превышает общую светимость Солнца в 100 - 100000 раз. Некоторые системы, например, рентгеновские барстеры, отличаются намного более непредсказуемыми и катастрофическими изменениями рентгеновской яркости. Другими типами астрономических источников рентгеновского излучения являются горячий диффузный газ, окружающий галактики или находящийся в скоплениях галактик, остатки сверхновых и активные галактические ядра. В 1996 г.

рентгеновское излучение впервые было обнаружено у нескольких комет.

Р

• Рефлекторный телескоп - телескоп, в котором главным собирающим свет элементом является зеркало.

• Рефракторный телескоп - телескоп, в котором в качестве главного элемента, собирающего световой поток, используется линза объектива.

Р-С

• Рефракция - явление преломления света на границе двух сред с разной оптической плотностью. Астрономическая рефракция увеличивает видимую высоту светил над. горизонтом.

• Сарос - период времени, по истечении которого повторяется цикл лунных и солнечных затмений. Его продолжительность, составляющая 6585,32 суток (18 лет и 10 (11) дней). Именно такой интервал времени требуется, чтобы Земля, Солнце и Луна вернулись к тому же самому взаимному расположению. В саросе содержится 41 солнечное и 29 теневых лунных затмений. В любой серии сароса каждое затмение происходит приблизительно на 8 часов позже и почти на 120° долготы западнее предыдущего затмения. В любой серии долгота затмения возвращается к исходному значению через три сароса (54 года). Этот факт был известен еще астрономам в древнем Вавилоне и империи Майя и строителям Стоунхенджа.

С

• Сверхгигант - член класса самых больших и наиболее ярких известных звезд. Сверхгиганты могут быть в 500 раз больше Солнца и во много тысяч раз ярче. Существуют сверхгиганты всех спектральных классов. Они представляют собой массивные звезды (с массой больше десяти масс Солнца и максимальной до 100) на поздних стадиях эволюции звезд. Сверхгигант с большой степенью вероятности может стать сверхновой.

С

• Сверхновая - катастрофический взрыв звезды, в ходе которого выделяется так много энергии, что по яркости она может превзойти всю галактику с ее миллиардами звезд. Кроме того, в десять раз больше энергии выделяется в виде кинетической энергии выброшенного взрывом вещества и еще в сто раз больше - в виде энергии нейтрино. Взрыв сверхновой происходит, когда старая массивная звезда истощает запас ядерного топлива. В этих условиях ядро становится неустойчивым и коллапсирует. Различают два вида сверхновых - сверхновые типа I и сверхновые типа II. В спектре сверхновых типа II присутствуют водородные детали, которых нет у сверхновых типа I. Световые кривые сверхновых типа I очень сходны между собой:

светимость устойчиво увеличивается в течение примерно трех недель, после чего снижается в течение шести месяцев или больше. Световые кривые сверхновых типа II более разнообразны. Сверхновые типа I подразделяются на типы Ia и Ib в соответствии с силой одной из линий поглощения кремния в оптическом спектре. Эта линия сильна для типа Ia и слаба - для Ib. Предполагают, что сверхновые типа Iа являются белыми карликами в двойных системах, где имеет место передача массы от компаньона. Выделение энергии может быть обусловлено распространением волны горения углерода в недавно присоединенном веществе. Взрыв может означать полный распад белого карлика. В ходе ядерных реакций возникает нестабильный изотоп 56Ni (в количестве около одной солнечной массы), который в течение нескольких месяцев превращается сначала в 56Co, а в конечном счете - в 56Fe.

Скорость этого радиоактивного распада согласуется с наблюдаемой скоростью снижения светового излучения.

С

• Различие физических механизмов в сверхновых типа Ia и Ib еще не выяснено. Сверхновые типа II, повидимому, являются массивными звездами (с массой больше восьми солнечных масс, что определило их развитие в процессе эволюции звезд), запас топлива в ядрах которых полностью исчерпан. На этой стадии они, подобно луковице, состоят из концентрических сферических оболочек. В каждой из оболочек идет своя, отличная от других, ядерная реакция. В какой-то момент времени в центральном ядре начинается горение кремния, и сразу же (в течение суток) развивается неустойчивость, поскольку образующееся железо не может превратиться в более тяжелые элементы без притока энергии. Как только генерирование энергии прекращается, исчезает и внутреннее давление, которое до того уравновешивало вес вышележащих слоев. Развивается процесс сжатия, при котором ядро коллапсирует меньше, чем за секунду.

Скорость процесса увеличивается по мере того, как ядра железа распадаются, отдавая нейтроны. Однако этот процесс не может продолжаться до бесконечности. Когда вещество достигает ядерной плотности, сопротивление дальнейшему сдавливанию внезапно сильно возрастает, и в сжимающемся веществе происходит "отдача". Возникает направленная наружу ударная волна. Внешние слои звезды отрываются и уносятся в пространство со скоростью в несколько тысяч километров в секунду. Оставшееся ядро представляет собой нейтронную звезду. Выброшенное при взрыве вещество образует расширяющийся остаток сверхновой. Нейтронные звезды можно обнаружить как пульсары по их радиоизлучению, а в некоторых случаях и по пульсирующему световому и рентгеновскому излучению. Взрыв сверхновой обогащает химический состав межзвездной среды, из которой образуются последующие поколения звезд.

Очень старые звезды содержат намного меньше элементов тяжелее водорода и гелия (по сравнению с Солнцем и объектами Солнечной системы). Многие из тяжелых элементов естественным путем могут возникнуть только при взрыве сверхновых. Сверхновая - очень редкое событие: за последнюю тысячу лет в нашей собственной Галактике визуально наблюдалось только пять сверхновых. Происходили и другие взрывы, идентифицированные по радиоизлучению их остатков, но сами вспышки были скрыты затеняющей пылью. Взрыв Сверхновой 1987A в близком Большом Магеллановом Облаке дал астрономам беспрецедентную для настоящего времени возможность детального изучения сверхновых. Каждый год во всех галактиках (вне нашей собственной) обнаруживают около пятидесяти сверхновых.

С

• Светимость (L) - энергия, излучаемая в единицу времени ярким телом.

• Световое загрязнение - рассеяние света искусственных источников в ночном небе, которое увеличивает яркость фона выше естественного уровня, что мешает астрономическим наблюдениям. Световое загрязнение наиболее выражено вблизи центров цивилизации. В США принято несколько законодательных актов, призванных защитить обсерватории от искусственного освещения в близлежащих городах. Однако как для любителей, так и для астрономов-профессионалов проблема светового загрязнения становится все более острой.

• Световой год - расстояние, которое свет (или любая другая форма электромагнитного излучения) пройдет в вакууме за один год. Световой год эквивалентен 9,4607 1012 км, 63240 а.е. или 0,30660 парсека.

• Свечение атмосферы - все типы свечения, возникающие в верхней атмосфере Земли (ночное свечение атмосферы), исключая тепловое излучение, полярные сияния, молнии и яркие следы метеоров. Спектр ночного свечения лежит в диапазоне от 100 нм до 22,5 мкм. Основная часть свечения возникает в слое толщиной от 30 до 40 км на типичных высотах в 100 км и представляет собой излучение на длине волны кислорода 558 нм. Из космического пространства свечение неба выглядит как зеленоватое светлое кольцо вокруг Земли.

• Сезон - часть естественного цикла изменений условий окружающей среды, преобладающих на поверхности планеты, обусловленных обращением планеты вокруг Солнца. Смена сезонов происходит на всех планетах, у которых наклон оси вращения к плоскости эклиптики отличается от 90°. Сезонные эффекты, касающиеся, например, состояния полярных ледяных шапок, особенно заметны на Земле и Марсе. Традиционно выделяют четыре сезона - весну, лето, осень и зиму, - но строгого деления между ними нет, а сезонные условия от года к году могут значительно меняться.

• Сейфертова галактика - тип галактик с ярким точечным ядром и незаметными спиральными рукавами, впервые описанный Карлом Сейфертом в 1943 г. Их спектр показывает широкие эмиссионные линии. Около 1% всех спиральных галактик являются сейфертовскими. Многие из них - сравнительно сильные инфракрасные источники; в некоторых центральное ядро является и слабым радиоисточником. Обычно наблюдается изменение яркости ядра.

С

• Секунда - единица измерения времени, определяемая в Международной Системе Единиц (СИ) как "продолжительность 9 192 631 770 периодов колебаний, соответствующих переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133".

• Серебристые облака - светлые голубоватые облака в летнем сумеречном небе. Они возникают в верхней атмосфере на высотах около 80 км и по структуре довольно разнообразны. Серебристые облака очень тонки и рассеивают лишь малую часть падающего на них солнечного света, так что с Земли днем или в начале сумерек их нельзя заметить. Так как они появляются только в летнее время, их невозможно наблюдать в самых высоких широтах, где небо никогда не становится достаточно темным. В то же время серебристые облака - явление высокоширотное, т.к. диапазон широт, в которых они практически наблюдаются, весьма узок (от 50°до 65°). Облака образуются в присутствие ядер конденсации, на которых вода превращается в лед. Точно не известно, каковы эти ядра (ионы, возникающие под действием солнечного ультрафиолета, или микрометеоритные частицы).

Главное условие возникновения серебристых облаков - достаточно низкая температура, которая на высотах 80-90 км должна быть около 120 K (-150° C). Облака возникают в результате воздушных течений от одного полюса к другому и не зависят от уровня солнечной радиации. Имеются наблюдения, позволяющие предположить, что в течение последних десятилетий серебристые облака возникают чаще. Это связано с возрастанием концентрации водяных паров в верхней атмосфере из-за увеличения количества метана. Частота возникновения серебристых облаков изменяется с циклом солнечной активности по обратному закону.

• Серп - фаза Луны, Венеры или Меркурия, когда у них освещено меньше половины диска.

С

• Сидерический период - время обращения планеты или спутника вокруг основного тела, измеренное относительно звезд. Год - период обращения Земли вокруг Солнца относительно звезд. Его продолжительность - 365,25636 суток, а из-за влияния прецессии он на 20 мин. длиннее тропического года. Месяц - период обращения Луны вокруг Земли (измеренный относительно звезд).

Продолжительность сидерического месяца - 27,32166 суток.

• Симбиотические звезды - термин, впервые использованный в 1928 г. П. Мерриллом для описания звезд с необычным типом комбинационного спектра. В таком спектре присутствуют как детали, характерные для холодной звезды, так и эмиссионные линии высокотемпературного газа. Приемлемая интерпретация этого явления состоит в том, что в системе происходит передача массы холодной звезды компаньону, в роли которого выступает карлик или белый карлик. Энергия нагретого аккреционного диска (или горячего пятна) могла бы вызывать ионизацию натекающего газа, что порождает эмиссионные линии типа линий туманностей. Такие звезды являются переменными из-за нерегулярности передачи массы и затмений выбрасываемого вещества большой холодной звездой. Они известны также как звезды типа Z Андромеды.

• Сингулярность - математическое понятие, которое можно представить как искривленную область пространства-времени, где те или иные количественные характеристики могут стать бесконечными, так что обычные физические законы перестают действовать. Предполагается, что Большой Взрыв начался в такой сингулярности.

• Синодический период - для планет - средний интервал времени между последовательными соединениями пары планет при наблюдении от Солнца; для спутников - средний интервал между последовательными соединениями спутника с Солнцем при наблюдении с родительской планеты спутника. Синодический месяц

- интервал времени между двумя последовательными новолуниями (или последовательными наступлениями любой другой фазы Луны), который равен 29,53059 суток.

С

• Синхротронное излучение - электромагнитное излучение, испускаемое электрически заряженной частицей, движущейся в магнитном поле со скоростью, близкой к скорости света. Название связано с тем, что такое излучение впервые наблюдалось в синхротронных ядерных ускорителях. Синхротронное излучение является главным источником радиоизлучения остатков сверхновых и радиогалактик. Большая часть светового и рентгеновского излучения Крабовидной туманности порождается в синхротронных процессах электронами с очень высокой энергией, испускаемыми центральным пульсаром. Спектр синхротронного излучения имеет характерный профиль, сильно отличающийся от профиля теплового излучения горячего газа, благодаря чему идентификация синхротронных источников значительно облегчается. Поляризация излучения позволяет оценить магнитное поле источника.

• Система UBV - фотометрическая система, разработанная в 1950-х гг. Г.Л. Джонсоном и У.У. Морганом.

Система основана на измерении звездных величин в трех широких полосах спектра, названных U (ultraviolet

- ультрафиолетовый), B (blue- синий) и V (visual - визуальный), которые сосредоточены на длинах волн 350, 430 и 550 нм соответственно. Показатели цвета, т.е. величины разностей (U–B) и (B–V), можно использовать для определения некоторых физических свойств отдельных звезд или их групп. Чтобы расширить возможности метода, в 1965 г. Джонсон предложил использовать дополнительно еще несколько полос в инфракрасной части спектра (от 0,7 до 10,2 мкм). Они были названы R, I, J, H, K, L, M и N.

• Система координат - способ определения положения точки или объекта в пространстве или на поверхности в терминах линейного или углового расстояния от некоторой заданной плоскости, линии или точки.

Например, для определения положения точки на поверхности Земли обычно используются географические координаты - широта и долгота. В астрономии для определения положения объекта на небесной сфере применяются несколько различных систем небесных координат, каждая из которых разработана для своих целей. Используются и другие системы координат; например, для определения положения планет относительно Солнца и Земли - система пространственных декартовых координат X, Y, Z.

С

• Склонение - угловое расстояние по часовому кругу от небесного экватора до светила. Положительно к северу и отрицательно к югу.

• Скорость лучевая - проекция скорости небесного тела относительно наблюдателя на линию визирования. Положительна в случае удаления тела от наблюдателя и отрицательна в случае приближения.

• Собственное движение - видимое движение звезды по небесный сфере, количественно измеряемое как изменение ее положения за год (в угловых единицах). Собственное движение является комбинацией истинного движения звезды в пространстве и относительного движения Солнечной системы.

• Соединение - конфигурация двух небесных тел, при которой их эклиптические долготы равны. В случае соединения внутренней планеты с Солнцем различают нижнее соединение - когда планета расположена между Землей и Солнцем, и верхнее соединение - когда планета расположена за Солнцем.

С

• Созвездие - один из 88 участков звездного неба или звездная фигура внутри него. Согласно дошедшим до нас источникам, еще со времен античности люди давали имена заметным фигурам из ярких звезд. В каждой культуре был принят свой принцип деления неба на фрагменты. Многие из сегодняшних созвездий были первоначально выделены в Месопотамии и затем были признаны греками. Сорок восемь созвездий были перечислены Птолемеем во II в. н.э., а остальные добавлены позже, начиная с 16 го века. На старых звездных картах можно обнаружить некоторые созвездия, которые не нашли общего признания.

Первоначально созвездия рассматривались просто как звездные фигуры, но постепенно они приобретали практическое значение для определения звезд и описания их положения на небе. Отсутствие строгих стандартных определений созвездий по мере развития астрономии как науки приводило к недоразумениям при идентификации слабых звезд в малонаселенных областях неба. Поэтому в 1922г было введено деление неба на 88 созвездий, в 1928 г. утверждены границы и в 1930 г. были напечатаны атласы с определенными уже границами 88 созвездий по линиям прямого восхождения и склонения.

• Солнечная постоянная - полная солнечная энергия, падающая на единицу площади верхних слоев земной атмосферы за единицу времени, рассчитанная с учетом среднего расстояния от Земли до Солнца. Ее значение - около 1,35 кВт/м2. Вопреки названию, эта величина не остается строго постоянной, слегка изменяясь в ходе солнечного цикла. В частности, появление большой группы солнечных пятен уменьшает ее примерно на 1%. Наблюдаются и более долговременные изменения.

• Солнечное пятно - область на Солнце, где температура ниже, чем в окружающей фотосфере. Поэтому солнечные пятна кажутся относительно более темными. Эффект охлаждения вызывается наличием сильного магнитного поля, сконцентрированного в зоне пятна. Солнечные пятна могут возникать индивидуально, но часто они образуют группы или пары противоположной магнитной полярности. В темной центральной части солнечного пятна (тени) температура составляет около 3700 K по сравнению с 5700 K в фотосфере. Внешняя и более яркая часть солнечного пятна (полутень) образуется радиально направленными лучами, состоящими из ярких зерен на более темном фоне.

С

• Солнечные часы - простой инструмент для измерения времени, состоящий из специального стержня (или гномона) и "циферблата", на который падает его тень от Солнца. Циферблат градуирован в часах.

Солнечные часы измеряют истинное солнечное время. Существует множество систем солнечных часов разной степени сложности.

• Солнечный ветер - поток частиц (в основном протонов и электронов), истекающих за пределы Солнца со скоростью до 900 км/сек. Солнечный ветер фактически представляет собой горячую солнечную корону, распространяющуюся в межпланетное пространство.

• Солнечный цикл - периодическое изменение солнечной активности, в частности, числа солнечных пятен.

Период цикла - около 11 лет, хотя в течение XX в. он был ближе к 10 годам. В начале нового цикла пятен на Солнце практически нет. Первые пятна нового цикла появляются на гелиографических северных и южных широтах 35°- 45°; затем в процессе цикла пятна появляются ближе к экватору, доходя соответственно до 7° северной и южной широты. Эту картину распространения пятен можно представить графически в виде "бабочек" Маундера. Принято считать, что солнечный цикл вызван взаимодействием между "генератором", порождающим магнитное поле Солнца, и вращением Солнца. Солнце вращается не как твердое тело, причем экваториальные области вращаются быстрее, что вызывает усиление магнитного поля. В конечном счете поле "выплескивается" в фотосферу, создавая солнечные пятна. В конце каждого цикла полярность магнитного поля меняется, поэтому полный период составляет 22 года (цикл Хейла).

• Солнцестояние - момент прохождения центром диска Солнца самой северной (летнее) или южной (зимнее) точки эклиптики. Солнцестояния происходят около 21 июня и 21 декабря. В точке летнего солнцестояния Солнце стоит в небе наиболее высоко, а продолжительность светового дня максимальна. Во время зимнего солнцестояния высота Солнца в полдень самая низкая, а продолжительность светового дня (для каждой широты местности) минимальна. Летнее солнцестояние в северном полушарии (июнь) является зимним солнцестоянием в южном полушарии и наоборот.

С

• Спектр - результат разложения луча электромагнитного излучения, при котором компоненты с различными длинами волн разрешены в пространстве и расположены в порядке увеличения или уменьшения длины волны. Наиболее известный пример спектра - радуга в небе, которая появляется в результате разложения солнечного света на составляющие цвета (когда капли дождя действуют подобно призме). Полный спектр электромагнитного излучения охватывает (в порядке уменьшения длин волн) радио-, микроволновое, инфракрасное, видимое световое, ультрафиолетовое, рентгеновское и гамма-излучение.Имеется три основных типа спектров: непрерывный, эмиссионный линейчатый и линейчатый спектр поглощения, причем они могут возникать в любой комбинации. При графическом изображении зависимости интенсивности излучения от длины волны непрерывный спектр имеет гладкое распределение, без острых пиков или впадин. Эмиссионные линии имеют вид относительно узких выступов или пиков интенсивности. Они могут существовать отдельно или налагаться на непрерывный спектр. Линии поглощения - относительно узкие углубления в непрерывном спектре. Непрерывные спектры возникают в процессах типа излучения абсолютно черного тела или синхротронного излучения. Линейчатые спектры - проявление дискретных квантов энергии, испускаемых или поглощаемых в атомах или молекулах при точно определенной длине волны.

С

• Спектральная линия - в спектре - деталь, охватывающая относительно узкий диапазон длин волн и характеризующая интенсивность поглощения или излучения. В результате переходов между двумя дискретными энергетическими уровнями атома или иона возникают линейчатые спектры.

Переход к более низкому энергетическому состоянию (с излучением фотона) порождает эмиссионную линию. Переход к более высокому энергетическому состоянию (с поглощением фотона) порождает линию поглощения.

• Спектрально-двойная - двойная звезда, структура которой обнаруживается по спектру, даже если ее компоненты визуально не могут быть разрешены. В спектрально-двойной с двойными линиями можно различить два наложенных друг на друга спектра. Относительное смещение линий носит периодический характер и вызывается доплеровским эффектом в процессе обращения звезд вокруг их общего центра масс. В спектрально-двойной с одиночными линиями два компонента настолько сильно отличаются по своей светимости, что виден спектр только более яркого компонента. Однако при сравнительном измерении относительно стандартного спектра и в этом случае обнаруживается периодическое изменение длины волны линий.

С

• Спектральный класс - классификация звезд в соответствии с видом их спектра. Спектральная классификация в первую очередь основана на температурной последовательности, но может учитываться и класс светимости. Существующие буквенные обозначения классов восходят к первой классификации, предпринятой в Обсерватории Гарвардского колледжа (финансируемой по завещанию Генри Дрэпера) и опубликованной в 1890 г. Первоначально введенные классы, обозначенные буквами A - Q, впоследствии были упорядочены в порядке температурной последовательности, в результате чего окончательно установилось деление на основные классы с буквенными обозначениями O, B, A, F, G, K и M.

Основные классы могут быть разделены далее на 10 подклассов, обозначаемых цифрами от 0 до 9 (например, A0, K5). Спектральный класс Диапазон температур Основные детали видимого спектра O 25,000 K Относительно мало линий поглощения. Линии ионизированного He, дважды ионизированного N, трижды ионизированного Si. Линии H слабы. B 11,000-25,000 K Линии нейтрального He, однократно ионизированных O и Mg. Линии H сильнее, чем в O-звездах. A 7,500-11,000 K Сильные линии H. Линии однократно ионизированных Mg, Si, Fe, Ti, Ca и т.д. и некоторых нейтральных металлов. F 6,000-7,500 K Линии H слабее, а линии нейтральных металлов сильнее, чем в A-звездах. Линии однократно ионизированных Ca, Fe, Cr. G 5,000K Наиболее заметная деталь - линии ионизированного Ca. Много линий ионизированных и нейтральных металлов. Полосы CH. K 3,500-5,000 K Преобладают линии нейтральных металлов. Полосы CH. M 3,500 K.

С

• Сильные линии нейтральных металлов и молекулярные полосы TiO. По мере того, как научные исследования дают все более детальную информацию, система классификации продолжает развиваться и уточняться. Другие классификации включают S-звезды и углеродные звезды, прежде называвшиеся R- и N-звездами, а теперь располагаемые в последовательности от C0 до C9, что приблизительно соответствует неуглеродным звездам температурных классов от G4 до M. Чтобы отразить дополнительную информацию о спектре, в классификации используются различные префиксы и суффиксы. Наиболее употребительные из них: c резкие линии d карлик = звезда главной последовательности D белый карлик e эмиссия (эмиссия водорода в O-звездах) em эмиссия в линиях металлов ep пекулярная эмиссия eq эмиссия с поглощением на более коротких волнах f эмиссия гелия и неона в Oзвездах g гигант k межзвездные линии m сильные линии металлов n диффузные линии nn очень размытые диффузные линии p пекулярный спектр s резкие линии sd субкарлик wd белый карлик wk слабые линииВ 1943 г. В.В. Морган, П.К. Кинан и Э. Келлман определили спектральные критерии для классов светимости, а также выбрали образцы звезд в качестве стандартов для каждого из гарвардских подклассов. Классы светимости обозначаются большими римскими цифрами: Ia Сверхгиганты с большой светимостью Ib Сверхгиганты с меньшей светимостью II Яркие гиганты III Нормальные гиганты IV Субгиганты V Карлики/Главная последовательность Позже были введены еще два класса (в настоящее время они используются редко): VI Субкарлики VII Белые карлики. Эти обозначения помещаются после температурного класса и перед любым суффиксом. Например, B3-гигант с эмиссионными линиями классифицировался бы как B3IIIe.

С

• Спектрогелиограф - инструмент для получения изображения всего Солнца или его части в монохроматическом свете. Входной щелью вырезается часть наблюдаемого диска Солнца. Посредством дифракционной решетки свет разлагается в спектр, а затем с помощью второй щели выделяется узкая область спектра. Сканируя входной щелью весь солнечный диск, можно получить полное изображение Солнца.

С

• Спектрограф - инструмент для постоянной регистрации спектра. Спектрометр - инструмент для наблюдения спектра и измерения его деталей при прямом наблюдении. Инструмент для визуального наблюдения спектра - спектроскоп.

• Спикулы - похожие на шипы структуры в солнечной хромосфере, которые наблюдаются в лимбе или около него. Они меняются очень быстро; время их жизни составляет от пяти до десяти минут. Обычно спикулы имеют размеры порядка 1000 км в поперечнике и 10000 км в длину. Распределение спикул на Солнце неравномерно - они концентрируются на границах ячеек супергрануляции.

С

• Спиральная галактика - любая галактика со спиральными рукавами. Эдвин Хаббл разделил спиральные галактики на две обширные группы - с центральной перемычкой (SB-галактики) и без нее (S). Каждая группа далее подразделяется на три категории - a, b и c. Sa- и SBa-галактики имеют туго закрученные рукава и относительно большую центральную часть (балдж). Sc- и SBc-галактики имеют широко раскинувшиеся рукава и небольшой центральный балдж. Галактики типа Sb и SBb занимают промежуточное положение.

Наша собственная Галактика (Млечный Путь) - спиральная галактика, возможно, с небольшой центральной перемычкой. Ее структура абсолютно типична: молодые звезды и межзвездное вещество сконцентрированы в диске, особенно в спиральных рукавах. Кроме того, Галактику окружает сферическое гало, содержащее старые звезды и шаровые скопления. Спиральные рукава не представляют собой постоянных жестких структур, они скорее имеют характер волн плотности. Обращаясь вокруг центра галактики, звезды и межзвездное вещество образуют спиральные области увеличенной плотности.

Существующие рукава образовались в различные временные эпохи.

• Среднее солнечное время - система измерения времени, основанная на вращении Земли, которое предполагается равномерным. Фактически скорость вращения Земли, измеряемая по атомным часам, постоянной не является. Поэтому среднее солнечное время было заменено международным атомным временем (TAI). Чтобы синхронизовать TAI с вращением Земли, иногда вводятся "високосные секунды". Так как ось вращения Земли наклонена к плоскости эклиптики и ее орбита вокруг Солнца является не круговой, а эллиптической, то видимое движение Солнца по небу в течение года неравномерно. Истинное солнечное время, измеряемое непосредственно солнечными часами, отличается от среднего солнечного времени на величину, известную как уравнение времени, которая в течение года изменяется по сложному закону.

Чтобы определить среднее солнечное время, вводится абстрактное понятие среднего Солнца. Этот гипотетический объект движется по круговой орбите в плоскости небесного экватора с постоянной скоростью, совершая один оборот за тропический год.

• Стратосфера - область земной атмосферы, расположенная непосредственно над тропосферой. Она начинается на высоте около 15 км и простирается до 50 км. От основания к верхним слоям стратосферы температура увеличивается с 240 K до 270 K.

С

• Сумерки - время перед восходом солнца и после заката, когда небо частично освещено рассеянным солнечным светом. Гражданские сумерки определяются как период, когда расстояние от зенита до центра диска Солнца составляет от 90° 50' до 96° (под горизонт до 6 градусов); навигационные сумерки - интервал времени, когда эта величина составляет от 96° до 102° (под горизонт до 12 градусов), а астрономические сумерки - от 102° до 108° (под горизонт до 18 градусов). При большем погружении начинается астрономическая ночь.

• Cутки - в астрономии - единица времени, определенная как 86400 секунд, где секунда в свою очередь определена в терминах частоты, используемой в цезиевых атомных часах.

Определение суток тесно связано с периодом вращения Земли, хотя это вращение и не является абсолютно равномерным. Сутки звездные - промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же географическом меридиане. Истинные солнечные - промежуток времени между двумя последовательными одноименными кульминациями центра видимого диска Солнца на одном и том же географическом меридиане. Средние солнечные - промежуток времени между двумя последовательными одноименными кульминациями среднего экваториального Солнца на одном и том же географическом меридиане.

• Сфера небесная - сфера произвольного радиуса с центром в точке наблюдения.

• Сферическая аберрация - дефект изображения, создаваемого линзой или зеркалом, который вызывается тем, что лежащие на разных расстояниях от оптической оси участки линзы или зеркала при отражении или преломлении света имеют различное фокусное расстояние. Этот дефект присущ только сферическим поверхностям и отсутствует у параболоидов, хотя другой вид искажений ( кома) характерен как для тех, так и для других.

Т

• Телеметрия - дистанционное управление космическими аппаратами или инструментами на их борту, а также передача на Землю результатов наблюдений. Телеметрия выполняется с помощью радиосигналов.

Т

• Телескоп - инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал. Оптические телескопы бывают двух основных типов (рефракторы и рефлекторы), отличающиеся выбором главного собирающего свет элемента (линза или зеркало соответственно). У рефракторного телескопа на передней стороне трубы имеется объектив, а в задней части, где формируется изображение, - окуляр или фотографическое оборудование. В отражательном телескопе в качестве объектива использовано вогнутое зеркало, располагающееся в задней части трубы. Объектив рефракторного телескопа обычно представляет собой составную линзу из двух или нескольких элементов с относительно большим фокусным расстоянием. Использование составных линз уменьшает хроматическую аберрацию. Минимизировать как хроматическую, так и сферическую аберрацию можно, если использовать большое фокусное расстояние, но это приводит к тому, что рефракторы получаются длинными и громоздкими. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йерксской обсерватории. Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы, и их легче изготовить самостоятельно. В рефлекторе свет собирается в точке перед первичным зеркалом, называемой первичным фокусом. Собранный пучок света обычно направляется (посредством вторичного зеркала) к более удобному для работы месту. С этой точки зрения различают несколько общепринятых систем, в том числе ньютоновский телескоп, кассегреновский телескоп, фокус куде и фокус Несмита.

Т

• В очень больших телескопах наблюдатель имеет возможность работать непосредственно в первичном фокусе в специальной кабине, установленной в главной трубе. На практике как вторичное зеркало, так и кабина в первичном фокусе не оказывают существенного влияния на работу телескопа.

Большие многоцелевые профессиональные телескопы обычно строят так, что наблюдатель получает возможность выбора фокуса. Ньютоновский фокус используется только в любительских оптических телескопах. Первичные зеркала в отражательных телескопах обычно изготавливают из стекла или керамики, которая не расширяется (и не сжимается) при изменении температуры. Поверхность зеркала тщательно обрабатывается до получения требуемой формы, обычно сферической или параболической, с точностью до долей длины волны света. Для получения отражательных свойств на поверхность стекла наносится тонкий слой алюминия. В ранних отражательных телескопах, например, у Уильяма Гершеля (1738-1822), первичное зеркало было изготовлено из полированного металлического сплава (68% меди и 32% олова). По латыни термин "зеркальный" передается как "speculum"; по этой причине для обозначения отражательного телескопа до сих пор иногда используют сокращение "spec".

Т

• Самые ранние стеклянные зеркала покрывали серебром, но это оказалось неудобным из-за того, что на воздухе серебро темнеет. В наиболее современных больших телескопах применяются методы активной оптики, которые позволяют использовать более тонкие и легкие зеркала, необходимая форма которых сохраняется поддерживающей системой, управляемой компьютером. Это позволяет использовать как зеркала с очень большими диаметрами, так и зеркала, составленные из отдельных элементов. Изображения, получаемые в астрономических телескопах, инвертированы. Так как введение дополнительной линзы, которая могла бы скорректировать изображение, поглотит часть светового потока, не принеся особой пользы, астрономы предпочитают работать непосредственно с инвертированными изображениями.

Установка астрономического телескопа - важная часть конструкции, так как наблюдатель должен иметь возможность легко направлять телескоп в заданную точку неба и поддерживать его ориентацию при вращении Земли, отслеживая видимое движение объекта по небу. Небольшие любительские телескопы и современные управляемые компьютером телескопы используют альтазимутальную установку. До появления компьютерного управления наиболее распространенной была экваториальная установка. Экваториальную установку имеют многие из работающих в настоящее время телескопов, причем эта система остается популярной и для любительских инструментов.

Т

• Темное вещество - материя, существование которой во Вселенной постулируется, но до сих пор не обнаружено.

Аргументы в пользу существования темного вещества получаются прежде всего из наблюдений скоростей галактик внутри галактических скоплений. Если судить по динамическим свойствам таких скоплений, то можно сделать вывод, что масса скоплений приблизительно в десять раз больше массы их светящихся частей.

Наблюдаемое вещество составляет только около 2% от того, которое отвечало бы положениям космологии. На роль темного вещества имеются многочисленные кандидаты, среди которых массивные галактические гало, коричневые карлики, звезды с очень малой массой, нейтрино и WIMP.

Т

• Терминатор - линия, отделяющая темную часть видимого диска планеты от светлой.



Pages:     | 1 |   ...   | 2 | 3 || 5 |

Похожие работы:

«л. М. ВОРОБЬЕВ АСТРОНОМИЧЕСКАЯ НАВИГАЦИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ИЗДАТЕЛЬСТВО «МАШИНОСТРОЕНИЕ» М о с к в а 1 УДК 629.7.051 (01) В книге даны обоснование и анализ методов применения современных средств астронавигации, определение кх точностных характеристик и эффективности. Рассмотрены системы сферических не бесных координат светил, условия и возможные принципы их пеленгации. Получено общее уравнение пеленгации светила плоскостью с подвижной платформы, уравнения пеленгации светила с...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ С.А. ЕСЕНИНА А.К.МУРТАЗОВ ENGLISH – RUSSIAN ASTRONOMICAL DICTIONARY About 9.000 terms АНГЛО-РУССКИЙ АСТРОНОМИЧЕСКИЙ СЛОВАРЬ Около 9 000 терминов РЯЗАНЬ-2010 Рецензенты: доктор физико-математических наук, профессор МГУ А.С. Расторгуев доктор филологических наук, профессор МГУ Л.А. Манерко А.К. Муртазов Русско-английский астрономический словарь. – Рязань.: 2010, 180 с. Словарь является переизданием...»

«1. Цели и задачи освоения дисциплины Цели: Цели освоения дисциплины «Современные проблемы оптики» состоят в формировании у аспирантов углубленных теоретических знаний в области оптики, представлений о современных актуальных проблемах и методах их решения в области современной оптики, а также умения самостоятельно ставить научные проблемы и находить нестандартные методы их решения.Задачи: 1. Углубленное изучение теоретических вопросов физической оптики в соответствии с требованиями ФГОС ВО...»

«200 ЛЕТ АСТРОНОМИИ В ХАРЬКОВСКОМ УНИВЕРСИТЕТЕ Под редакцией проф. Ю. Г. Шкуратова ГЛАВА 1 ИСТОРИЯ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ И КАФЕДРЫ АСТРОНОМИИ Харьков – 2008 Книга посвящена двухсотлетнему юбилею астрономии в Харьковском университете, одном из старейших университетов Украины. Однако ее значение, на мой взгляд, выходит далеко за рамки этого события, как относящегося только к Харьковскому университету. Это юбилей и всей харьковской астрономии, и важное событие в истории всей украинской...»

«· М.В.Сажии МЕНнАЯ I QЛОГИЯ I ГОСУДАРСТВЕННЫЙ АСТРОНОМИЧЕСКИЙ ИНСТИтут ИМ. П.КШ1ЕРНБЕРГ А М.В.Сажин СОВРЕМЕННАЯ КОСМОЛОГИЯ в популярном uзло:ж:енuu Москва. УРСС ББК 22.632 Настоящее издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований (nроект N.! 02-02-30026) Сажин Михаил Васильевич Совремеииая космология в популяриом изложеиии. М.: Едиториал УРСС, с. 2002. 240 ISBN 5-354-00012-2 в книге представлены достижения космологии за последние несколь­ ко...»

«Физика планет Метеориты Шевченко В.Г. Кафедра астрономии Харьковский национальный университет имени В.Н. Каразина Метеориты – тела космического происхождения, упавшие на поверхность Земли или других космических тел. Тела, оставляющие след и сгорающие в атмосфере принято называть метеорами. Метеоры, оставляющие яркий след в атмосфере и имеющие визуальную зв. величину ярче -3, называют болидами. При падении метеорита часто образовывается кратер (астроблема). Размер кратера зависит от массы...»

«ЦЕНТРАЛЬНАЯ ПРЕДМЕТНО-МЕТОДИЧЕСКАЯ КОМИССИЯ ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ЛИТЕРАТУРЕ Образцы олимпиадных заданий для муниципального этапа всероссийской олимпиады школьников по литературе в 2013/2014 учебном году Москва 2013 Примерные задания, комментарии к заданиям и критерии оценки заданий муниципального этапа Всероссийской олимпиады школьников по литературе 1. Задания для 7-8 класса Ученики 7-8 классов на муниципальном этапе завершают участие в олимпиаде. Задания для них должны...»

«АВТОБИОГРАФИЯ Я, Чхетиани Отто Гурамович, родился в 1962 году в г.Тбилиси, где и закончил физико-математическую школу им.И.Н.Векуа №42. В 1980 г. поступил на отделение астрономии физического факультета МГУ им. М.В.Ломоносова, которое и закончил выпускником кафедры астрофизики в 1986 году. Курсовую работу, посвящённую влиянию аккреции на эволюцию вращающихся компактных объектов, выполнял под руководством Б.В.Комберга (ИКИ АН СССР). В дипломе, выполненном под руководством С.И.Блинникова (ИТЭФ),...»

«СПИСОК ИЗДАНИЙ ИЗ ФОНДОВ РГБ, ПРЕДНАЗНАЧЕННЫХ К ОЦИФРОВКЕ В ОКТЯБРЕ 2015 Г. Содержание Общенаучное и междисциплинарное знание 3 Ежегодник «Системные исследования» 3 Естественные науки 5 Физико-математические науки 5 Математика 5 Физика. Астрономия 9 Химические науки 14 Биологические науки 22 Техника. Технические науки 27 Техника и технические науки (в целом) 27 Радиоэлектроника 29 Машиностроение 30 Приборостроение 32 Химическая технология. Химические производства 33 Производства легкой...»

«ОТЗЫВ официального оппонента на диссертацию Ранну Кристины Аллановны на тему: «Наблюдательные аспекты моделей расширенной гравитации» по специальности 01.03.02 – астрофизика и звездная астрономия, представленную на соискание учёной степени кандидата физикоматематических наук. Диссертация состоит из пяти глав и заключения. Диссертация посвящена рассмотрению альтернативных теорий гравитации. Имеется несоответствие названия диссертации и ее содержания. Несмотря на то, что в название входит...»

«В. И. Секерин ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — МИСТИФИКАЦИЯ ХХ ВЕКА Новосибирск, 2007 ББК 22.331 С28 Секерин В. И.С28 Теория относительности — мистификация ХХ века. Новосибирск: Издательство «Арт-Авеню», 2007. — 128 с. ISBN 5-91220-011-Х В книге приведены описания астрономических наблюдений и лабораторных экспериментов, подтверждающих соответствие скорости света классическому закону сложения скоростей и, следовательно, ложность постулата постоянства скорости света c = const, который является основой...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.Н. КАРАЗИНА Дудник Алексей Владимирович УДК 523.2:520.6.05:520.662 ДИНАМИКА РАДИАЦИОННЫХ ПОЯСОВ И ФОНОВОГО РАДИОИЗЛУЧЕНИЯ В ОКОЛОЗЕМНОМ ПРОСТРАНСТВЕ КАК ИНДИКАТОР ПРОЯВЛЕНИЙ СОЛНЕЧНОЙ АКТИВНОСТИ Специальности 01.03.02 – астрофизика, радиоастрономия 05.07.12 – дистанционные аэрокосмические исследования Диссертация на соискание научной степени доктора физико-математических наук Научный консультант: доктор...»

«Бураго С.Г.КРУГОВОРОТ ЭФИРА ВО ВСЕЛЕННОЙ. Москва Издательство КомКнига ББК 22.336 22.6 22.3щ Б90 УДК 523.12 + 535.3 Бураго Сергей Георгиевич Б90 Круговорот эфира во Вселенной.-М.: КомКнига, 2005. 200 с.: ил. ISBN 5-484-00045-9 В предлагаемой вниманию читателя книге возрождается идея о том, что Вселенная заполнена эфирным газом. Предполагается, что все материальные тела от звезд до элементарных частиц непрерывно поглощают эфир, который затем преобразуется в материю. При взрывах новых звезд и...»

«А. А. Опарин Древние города и Библейская археология Монография Предисловие Девятнадцатый век — время великих открытий в области физики, химии, астрономии, стал известен еще как век атеизма. Головокружительные изобретения взбудоражили умы людей, посчитавших, что они могут жить без Бога, а затем и вовсе отвергнувших Его. Становилось модным подвергать критике Библию и смеяться над ней, называя Священное Писание вымыслом или восточными сказками. И в это самое время сбылись слова, сказанные Господом...»

«Темными дорогами. Загадки темной материи и темной энергии Думаю, я здесь выражу настрой целого поколения людей, которые ищут частицы темной материи с тех самых пор, когда были еще аспирантами. Если БАК принесет дурные вести, вряд ли кто-то из нас останется в этой области науки. Хуан Кояр, Институт космологической физики им. Кавли, «Нью-Йорк Таймс», 11 марта 2007 г. Один из срочных вопросов, на которые БАК, возможно, даст ответ, далек от теоретических измышлений и имеет самое что ни на есть...»

«О. Нейгебауер. Точные науки в древности. М., 1968. С. 83–105. ГЛАВА IV ЕГИПЕТСКАЯ МАТЕМАТИКА И АСТРОНОМИЯ 34. Из всех цивилизаций древности египетская представляется мне наиболее приятной. Превосходная защита, которую море и пустыня обеспечивали долине Нила, не допускала чрезмерного развития духа героизма, который часто превращал жизнь в Греции в ад на земле. Вероятно, в древности не было другой страны, в которой культурная жизнь могла бы продолжаться так много столетий в мире и безопасности....»

«АСТРОКЛИМАТИЧЕСКАЯ CПРАВКА. ГОРНЫЙ АЛТАЙ В.И.Бурнашев (КрАО) Введение Общепринятое определение в среде специалистов: “Астроклимат, это пригодность местности для проведения астрономических наблюдений”. К сожалению, в последние годы условия для астрономических исследований значительно ухудшились. И не из-за природных катаклизмов. Поэтому цель данных заметок, не только сообщить читателям о некоторых новых веяниях в исследовании астроклимата, но и привлечь внимание общественности к положению...»

«В медиатеке МУ «ММЦ» имеются следующие диски: Идентификатор Тема Название АЛГ 01 алгебра алгебра и начала анализа 10-11 кл. АЛГ 02 алгебра алгебра и начала анализа 11 кл. АЛГ 03 алгебра алгебра 7-11 кл. АЛГ 04 алгебра алгебра 9 кл. решаем задачи из учебника АЛГ 05 алгебра алгебра 7-9 кл. АЛГ 06 алгебра алгебра не для отличников АЛГ 07 алгебра алгебра и начала анализа 11 кл. АЛГ 08 алгебра алгебра АЛГ 09 алгебра уроки алгебры Кирилла и Мефодия 10-11кл. АЛГ 10 алгебра уроки алгебры Кирилла и...»

«ISSN 0371–679 Московский ордена Ленина, ордена Октябрьской революции и ордена Трудового Красного Знамени Государственный университет им. М.В. Ломоносова ТРУДЫ ГОСУДАРСТВЕННОГО АСТРОНОМИЧЕСКОГО ИНСТИТУТА им. П.К. ШТЕРНБЕРГА ТОМ LXXVIII ТЕЗИСЫ ДОКЛАДОВ Восьмого съезда Астрономического Общества и Международного симпозиума АСТРОНОМИЯ – 2005: СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ К 250–летию Московского Государственного университета им. М.В. Ломоносова (1755–2005) Москва УДК 5 Труды Государственного...»

«АННОТИРОВАННЫЙ УКАЗАТЕЛЬ № 35 ЛИТЕРАТУРЫ ПО ФИЗИЧЕСКИМ НАУКАМ, ВЫШЕДШЕЙ В СССР В АПРЕЛЕ 1948 г. а) КНИГИ, БРОШЮРЫ И СБОРНИКИ СТАТЕЙ 1. Ватсон Флетчер, М е ж д у п л а н е т а м и. Перевод с английского Б. Ю. Левина, 227 стр., 106 фигур. 1 вклейка, ОГИЗ, Гос. изд-во техникотеоретической литературы, М.-Л., 1947, ц. 5 р. 50 к. (в переплёте), тираж 15000. Перевод одной из книг Гарвардской астрономической серии, предназначенной для читателей, обладающих подготовкой в объёме курса средней школы....»








 
2016 www.nauka.x-pdf.ru - «Бесплатная электронная библиотека - Книги, издания, публикации»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.